Understanding
Snort Performance

An Evidence-Based Approach

*Mike Lococo

«Senior Network Security Analyst

*New York University, largest private university in US
«<40k for-credit students +12k non-credit

«>15k employees

*Decentralized IT reporting structure

5 security staff

Survey

Familiar with Perfmonitor Preprocessor?
Familiar with --enable-perfprofiling?
Understand their sensor bottlenecks?

Familiar with Zabbix or another
monitoring system?

Snort + graphs is better than snort without graphs,
that's pretty much all we're going to cover. You'll still
make all the same dumb mistakes, they'll just be
easier to find.

We'll cover snort instrumentation, combine it with
some basic OS and other instrumentation, and then
look at graphs. It's not rocket science, but it makes it
easier to develop a situational awareness of what is
“normal” for your environment.

Libpcap

Free, works on commodity hardware
Scales to 200-300 Mbits/sec
Single-Queue/CPU

This is the default if you use libpcap prior
to ~1.0

Tweaks to sysctl.conf may help:

net.core.rmem_max = 33554432
net.core.netdev_max_backlog = 10000
net.core.rmem_default = 33554432

Mmapped Libpcap

Free, works on commodity hardware
Scales to 100 Mbits/sec
Single-Queue/CPU

Default for libpcap > ~1.0

Small hardcoded buffer-size limits
performance, unlike the abandoned Phil
Woods patches.

Note that performance may be worse with later
libpcaps.

AFPACKET

Free, works on commodity hardware

Scales to a 200-300 Mbits/sec (if you
increase your buffer size)

Single-Queue/CPU

Also called af packet

Snort Manual:
1.5.1 for syntax to configure from snort.conf
1.5.3 for syntax to configure from command-line

Sourcefire Howto:
http://vrt-blog.snort.org/2010/08/snort-29-essentials-
daq.html

Kernel Interface Manpage for af _packet:
http://manpages.ubuntu.com/manpages/jaunty/man’
/packet.7.html

PF_RING+TNAPI

Free-$250, works on commodity
hardware

Scales to a >1G Gig
Multi-Queue/CPU

Highest performance with certain intel
cards via proprietary drivers

Explanation of TNAPI at ntop.org:
http://www.ntop.org/TNAPI.htm|

Buy the high-performance drivers:
http://www.ntop.org/shop/cart.php

Might scale close to 10gig, but no independent
reports that I'm aware of confirm the ntop.org
numbers.

Intel X520 and Myricom 10G

$1k-2k dedicated capture cards
Scales to 10Gig
Multi-Queue/CPU

Most reports are preliminary, these are
relatively new cards. Linux drivers are
supposed to be in the kernel.

Endace/Napatech

$10k-20k dedicated capture cards
Scales to 10Gig
Multi-Queue/CPU

Well-established, well-tested. Expensive
and a bit of a pain to manage.

Suricata

Free, runs on commodity hardware

Scales according to your CPU-count, but
generally slower than snort.

Single-Queue/Multi-CPU

Evolving quickly

Holisticinfosec Performance Test from August 2010:
http://holisticinfosec.org/toolsmith/docs/august2010.h
tml

Summary is that Suricata is 4x less CPU-efficient
than snort, but if you compare a large multi-cpu
Suricata instance to a single-cpu snort instance it
can be faster given sufficient hardware.

Your Mileage will Vary

http://www.flickr.com/photos/usnationalarchives/4272498928/ 11

These are all anecdotes.

There are many site-specific factors, and you'll have
to test locally to determine what works for you.

The remainder of this presentation is aimed at giving
you the data you need to perform that local
assessment.

Perfmon Preprocessor

mpla@buffalo:~

File Edit V
F P Mg Ne File: 12743900004#####E##########H#HFHHHHFHHHRZHHHEE

1274390394, 0 79,27.128,739,27.432,315.194,263.997,327.573,85.601,72441, 72
0,0,34273,15.018, 15. 01u,15 035,15.018,0.000,15.018,0,1,0,0,1,9.998,0.038, 89.963,160.528,0
6,4.609,165.322,739,792,1548,1288,749,27.128,0.030,0.015,0.447,27.588,8121374,0,0,0.000,
724425290, 15016, 52231, 60. 736,2“.452,114.4u1,0‘000,0.000,0,0,0.000,0,0‘000,0,0,
1274390694,0.000,118.609,3.464,22.638,654,38.677,296.473,254.287,309.635,113.800,131183,131183,533
.561,0,51871,1.090,1.087,1.127,1.087,0.000,1.687,1,2,0,0,1,10.595,0.047,89.358,118.609,0.015,0.014
,5.948,124.569,654,829,1649,1398,672,22.638 001,0.532,23.168,14911932,0,0,0.000,0.000,0,0,

745,101955, 5’ 648, 27.611,172‘92", 0ee, 00,0 Q.00 ,0.000,0
1274390994,0.000,124.649,2.372,23.588 0,3 ,302. 255.602,308.239,115.657, 188986, 188986, 468
.137,0,51793, 2 559,2‘555,k. 2. ,0.06 1,9.780,0.040,90.180,124.649,0.031,0.030,

943 129.619,660,753,1471,1325,673,23.588, 466,24.052,21991938,0,0,0.000,0.000,0,0,1
398, 150766, 5¢ +29. 2. ¢ .000,0,0,0.000,0,0.000,0,0,
3 3,113. 620,249185,249135,573
.558,0, 51169 - 45€ 443 -.466,0.449,0.
,7.015,133. 664,858,1725,1532,684, 23
249185, 15590, 31969 701942,59.391,70.325,170‘444,0‘ 09,9.999,0,0,0.000,o,o‘ooo,o,a,
21.705,625, 97,296.521 249.574,30 .588,114.772,305198,305190,513
0.494,0.0¢ - c 039,0.035,89.926,108.620,0.006,0.006
99,0,0,0.000,0.000,0,0,
,19050,37017 49 .60 S .000,0.€ 000,0,0.000,0,0,
1274391894,0.000,118. 84 2. 2 2.254,240.493,291.228,116.406,357673,357673,621
D.723,0.813,0. ,0.000,0 ?" ST ,1,1 g 4,87.668,118.849,0.010,0.010
9,1718,1804,699,22.233,0.002,0.001,0.620,22.849,42331972,0,0,0.000,0.000,0,0,
3163,49.066,31.125,171.311,0.000,0.000, ,0.000,0,0.000,0,0,
/var/log/snort/dag :0/snort.stats

CSV output.
Simple to configure.
Little/no cpu overhead to collect.

Rotate with logrotate, or just let it grow to a few
hundred meg over the lifetime of your sensor.

Not much fun to interpret unless you have some way to
process it beyond reading the CSV file.

Perfmon Data Fields

The fields are “documented” in section
2.2.5 of the manual... poorly.

Drop rate, Mbits/sec, Packets/sec,
Alerts/sec, Packets received, Packets
dropped, many more

Be aware that the drop-rate is averaged over the
lifetime of the snort-process, not over the data-
collection period. A 5% drop rate may be 5% over 24
hours, or 60% for 2 hours.

Other fields are generally averaged over the data-
collection period, but one needs to be careful.

Perfprofiling Preprocessors

mpl4@hul§alu arflog/snort

File Edit view Search Terminal Help
Preprocessor Profile §

Microsecs Avg/Check Pct of Caller Pct of Total

3175669 3175669 44567776

3834882 3834082 37272444

7652341 7652341 6157684

9248646 9248646 5796810

1612502 1612502 1335519

111946 111946 664557

uricontent 2429686 2429686 530519
flow 6870142 6870142 180243

flowbits 2342757 2342757 164942

file data 158941 158941 5972
21891 21891 3629

55754 55754 3850

669 669 354

de 1571 1571 171
preproc_rule options 392 392 149
ip_proto 355 355 70

109 169 2

z 2 (]

2 2]

31961 31961 24925

2877321 2877321 22114866

2312558 2312558 21008287

2302108 2302108 208219539

s5TcpData 1193223 1193223 828221
55TcpPktInsert 724098 724098 783421
s5TcpFlush 275316 275316 483832
s5TcpProcessRebuilt 272583 272583 18197749
s5TcpBuildPa 272612 272612 385203
S5TcpNewsSess 24349 24349 37742
decode 2913679 2913679 2241893
httpinspect 16089499 1609499 1592399
perfmon 3170438 3170438 181574

eventq 6068614 6068614 175698
backorifice 528501 528501 104234
322 322 4683

161 161 700 . .

161 161 325 . d 17

FLETEER] 2897935 760

“Num” column shows component nesting within the
snort process. For example, “mpse” and “rule eval”
are components of the “detect” module.

“Percent of total” column gives a rough idea of how
much cpu time that component takes up. It's not
precise (note the top-level components do not add
up to 100) but relative comparisons are useful.

In this sample, the pattern-matcher and the stream-
preprocessor take up the vast-majority of time. This
is relatively healthy for a snort instance with lots
(~7k) rules enabled.

This snort can't be effectively tuned by stripping
individual rules, we'd need to cut down the number to
reduce the pattern matcher (mpse) CPU usage.

Perfprofiling Rules

icrosecs Avg/Check Avg/Match Avg/Nonmatc!

5262 194568
51037 191290
1871099 151181
59177 145081
103267 142976
1426598 135277
1071099 133735
1071099 . 2 133628
32500 121753
151@ 100112
500955 82858
5378 68060

h

2]

7

1

5

4

6 2003175 1
1

1

7

3

2

. . T
500955 68005 . . .1
i

il

7

1

<

1

7

2

3

7

7

1

2

2011920
1201
9 17154
16506
16221
2002997
2010286
4 2010287
5 2010119
6 15997
2003176
3535
9 2008666
17645
21 13509
22 13855
23 13300
24 13301
25 13932
26 2011066
[mpla@buffalo snort]$

500955 68005
500955 65958
EELGE] 65880
681158 64359
17656 GELEL
5808955 GEERE]
3809 59699
318327 56772
43606 55519
10619 49661
10619 49661

43686 47042
38240 46554

ML W N NN - =W N U WS W WU SR

Shows most “expensive” rules in terms of cpu
consumption, sorted by microsecs.

A high “check” count indicates a short/common
content match causing the rule to evaluate often.

A high “Avg/check” value usually indicates an
expensive regex.

Microsecs is checks * avg/check and represents the
relative cpu-cost of running the rule.

Rules that “match” a lot but don't “alert” are probably
setting flowbits, check to see if you care about that
flowbit and if not disable all the rules that set/check it.

Configuring Perfprofiling

Add --enable-perfprofiling to
configure prior to compiling.

In snort.conf:

SRR e e T ulles . print 1000, sort
total ticks, filename /var/log/snort/snort-
PeEEEcsETrnle. 1og

SRERE e FENIleDreprocs: print all, sort
total ticks, filename /var/log/snort/snort-
ERbanssmlorcproc. Llog

19

Documented in the perfprofiling readme package
with Snort's source:

http://cvs.snort.org/viewcvs.cgi/snort/doc/README.P
erfProfiling?rev=HEAD&content-
type=text/vnd.viewcvs-markup

There is allegedly a performance overhead for doing
this, but it's clearly not all that high. Perhaps 10%-
20% at the most, | suspect it's negligible.

Note that this is not trivially collectible or trendable,
but it's a good exercise to go through once a year or
so during a major upgrade.

Visualizing Snort Performance

Don't use a snort specific tool!!!

ZABBIX

Zenoss Nagios

20

You need data from many sources to evaluate snort
performance. Use a tool that can accept data from
many sources.

Zabbix has a relatively gentle learning curve and is
relatively featureful. Especially dynamically
generated graphs are great for exploring data.

I've heard very good things about Zenoss, but
haven't used it.

Nagios is well established, but has more legacy
baggage and a higher-learning curve. Plus there are
no graphing capabilities built in. Go for it if you have
expertise, but | wouldn't stand up a new instance
today.

Instrumenting Beyond Snort

Tap/Span: SNMP

Packet Transport: SNMP or NOC
Capture: Varies

Snort Analysis: PerfMonitor
Alerts to Disk: OS Stats
Database: OS or DB stats

Frontend: OS stats or App Stats 2!

Snort is an integrated system that depends on many
components, you want a system that can instrument
all (or many) of those components, not just snort.

Zabbix Concepts

Item: Data element to be collected
Graph: Visual trend for numeric data
Screen: A collection of graphs

Trigger: Nominal ranges for items

24

ltems can be collected from an agent that supports a
fairly wide variety of OS items natively. SNMP is also
supported, as well as trivial checks like pings or http-
requests from the server.

Graphs are generated dynamically at view time,
which makes exploration a cinch.

Screens, unlike most other resources can't be
templated, which can be frustrating.

Triggers support many conditions including string
tests.

Zabbix Concepts

Action: Performed on trigger condition(s)

Host/Tempate: Collections of (most of)
the above with inheritance

Reports: Weak. Hardcoded red-
light/green-light grids, plus uptime
reports for triggers.

25

Notifications are supported via actions, as are |IPMI
commands (I haven't tested), and remote agent
commands (Il also haven't tested, but know they
require sudo/nopasswd access for the zabbix-agent
user). Actions are another resource that can't be
templated for no reason that | can fathom.

Collecting Perfmon Data

Create a userparameter in
zabbix_agentd.conf:

UserParameter=tss.snort.perfmon[*], tail
SRV eV e Enert /51 /snort.stats' |
EE AR peint S S21}°

26

This userparameter accepts an interface-name ($1)
and an awk column-number ($2). It pulled the most
recent line from snort.stats for the appropriate
interface, and prints out the column requested (note
the extra $, as awk uses them to denote variables
just like zabbix does.

Create an ltem

27

This is my dropped packets item.

Note “Store Value™ — Delta setting. The snort
dropped packet stats are poor in my opinion due to
averaging over the lifetime of the process, and this
stat is given as a simple counter. Zabbix converts the
counter into a number of dropped packets per
collection-period and gracefully handles overflow-
rollovers.

Create a Graph

Help | Get support | print | Profie | Logout

SEARCH:

Group [all £l Host [typhoon s its nyu.edu

typhoon.tss.its.nyu.edu: Snort Dropped Packets - ethl (1w 9h)

26.01 00:20

n avg max
ckets O packets 72458 Kpackets 345 Mpacke!
Kpackets O packets 62108 Kpackets 1033 Mpacke

28

Line graphs or pie graphs.

Line graphs can be stacked, as above, to show
cumulative values over time. This snort sensor is
angry, red is dropped packets, green is processed
packets.

Create a Screen

okt 5 s ek CPU ifzaion ()
'TELE

Three sensors, in columns.

In rows from top to bottom are: cpu-utilization
(normalized against the number of cpu's present),
bandwidth reported by snort (stacked where there
are multiple snort instances), bandwidth reported by
the gigamon (or kernel on the right), packet
processed vs dropped packets where available.

This kind of at-a-glance analysis really changed the
way we operate.

Find Problems - DB Disk Outage

30

This was a real snort outage, and this is the real
graph that | found the problem with.

This was a disk-space outage on our DB server (the
scale goes to 120%, but my disks do not), but |
actually had to investigate my whole failure chain to
find it. Doing so in zabbix took only a few minutes.

Proper use of triggers and actions/alerts could have
prevented this from happening at all.

Intermittent Packet Loss

elp | Get support | Frint | profie | Logout

Triggers Events Graphs Screens Maps Discovery ITservices searc:

Group [l =1 Host [typhoon.tss.its.nywedu 7] Graph [Snort Dropped Packets - cthi 1]

07.09.2010 10:32 - 14.09.2010

07d 00n Oom__ (1
typhoon.tss.its.nyu.edu: Snort Dropped Packets - ethl (1w)
60 Mpackets’
50 Mpackets
N
le
20 Mpackets
30 Mpackets
\
20 Mpackets i
10 Mpackets
0 packes
last min v max
B Snort ethl - Packets Received lavg] 318Mpackets 375.39 Kpackets 475 Mpackets 66.12 Mpackets
B Snort eth] - Dropped Packets Count [avg] 0 packets 0 packets 458,56 Kpackets 2136 Mpackets

Connected as

31

This sensor can achieve acceptable loss stats by
filtering one port on one host that does large nightly
transfers.

Traffic Growth

32

This sensor was spec'ed for 50-100mbits of traffic.
The two previous dropped-packets graphs are for
this host at different times during it's traffic growth to
now 500mbit/sec.

Take note of the gaps for comparison on the next
slide.

Span Outage

33

The second gap also has a gap in the system load
graph, this was a planned outage.

The first gap has low system load stats. Our span
was misconfigured by the NOC and we stopped
getting packets. Zabbix told us before our incident
monitoring folks realized that alerts had stopped.

Mean Nice

34

This was a bear to troubleshoot. Processes were
getting reniced and we couldn't figure out how.

Turns out it was updated processes inheriting the
nice-value of yum-updatesd when being restarted
after upgrades. We finally made this determination
by correlating log timestamps with initial nice-cpu
spikes. We couldn't have done it based on logs
alone, we needed the CPU trend data.

This is an outstanding redhat bug by the way, watch
out for it.

Conclusion

Instrument your systems
Visualize your data
Troubleshoot faster

Understand what's normal for you

37

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

