

 1

Understanding
Snort Performance

An Evidence-Based Approach

●Mike Lococo
●Senior Network Security Analyst
●New York University, largest private university in US
●<40k for-credit students +12k non-credit
●>15k employees
●Decentralized IT reporting structure
●5 security staff

 2

Survey

Familiar with Perfmonitor Preprocessor?

Familiar with --enable-perfprofiling?

Understand their sensor bottlenecks?

Familiar with Zabbix or another
monitoring system?

Snort + graphs is better than snort without graphs,
that's pretty much all we're going to cover. You'll still
make all the same dumb mistakes, they'll just be
easier to find.

We'll cover snort instrumentation, combine it with
some basic OS and other instrumentation, and then
look at graphs. It's not rocket science, but it makes it
easier to develop a situational awareness of what is
“normal” for your environment.

 3

Click to add title

<Capture Frameworks>

 4

Libpcap

Free, works on commodity hardware

Scales to 200-300 Mbits/sec

Single-Queue/CPU

This is the default if you use libpcap prior
to ~1.0

Tweaks to sysctl.conf may help:

net.core.rmem_max = 33554432
net.core.netdev_max_backlog = 10000
net.core.rmem_default = 33554432

 5

Mmapped Libpcap

Free, works on commodity hardware

Scales to 100 Mbits/sec

Single-Queue/CPU

Default for libpcap > ~1.0

Small hardcoded buffer-size limits
performance, unlike the abandoned Phil
Woods patches.

Note that performance may be worse with later
libpcaps.

 6

AFPACKET

Free, works on commodity hardware

Scales to a 200-300 Mbits/sec (if you
increase your buffer size)

Single-Queue/CPU

Also called af_packet

Snort Manual:
1.5.1 for syntax to configure from snort.conf
1.5.3 for syntax to configure from command-line

Sourcefire Howto:
http://vrt-blog.snort.org/2010/08/snort-29-essentials-
daq.html

Kernel Interface Manpage for af_packet:
http://manpages.ubuntu.com/manpages/jaunty/man7
/packet.7.html

 7

PF_RING+TNAPI

Free-$250, works on commodity
hardware

Scales to a >1G Gig

Multi-Queue/CPU

Highest performance with certain intel
cards via proprietary drivers

Explanation of TNAPI at ntop.org:
http://www.ntop.org/TNAPI.html

Buy the high-performance drivers:
http://www.ntop.org/shop/cart.php

Might scale close to 10gig, but no independent
reports that I'm aware of confirm the ntop.org
numbers.

 8

Intel X520 and Myricom 10G

$1k-2k dedicated capture cards

Scales to 10Gig

Multi-Queue/CPU

Most reports are preliminary, these are
relatively new cards. Linux drivers are
supposed to be in the kernel.

 9

Endace/Napatech

$10k-20k dedicated capture cards

Scales to 10Gig

Multi-Queue/CPU

Well-established, well-tested. Expensive
and a bit of a pain to manage.

 10

Suricata

Free, runs on commodity hardware

Scales according to your CPU-count, but
generally slower than snort.

Single-Queue/Multi-CPU

Evolving quickly

Holisticinfosec Performance Test from August 2010:
http://holisticinfosec.org/toolsmith/docs/august2010.h
tml

Summary is that Suricata is 4x less CPU-efficient
than snort, but if you compare a large multi-cpu
Suricata instance to a single-cpu snort instance it
can be faster given sufficient hardware.

 11

Your Mileage will Vary

http://www.flickr.com/photos/usnationalarchives/4272498928/

These are all anecdotes.

There are many site-specific factors, and you'll have
to test locally to determine what works for you.

The remainder of this presentation is aimed at giving
you the data you need to perform that local
assessment.

 12

Click to add title

</Capture Frameworks>

 13

Click to add title

<Snort Instrumentation>

 14

Perfmon Preprocessor

CSV output.

Simple to configure.

Little/no cpu overhead to collect.

Rotate with logrotate, or just let it grow to a few
hundred meg over the lifetime of your sensor.

Not much fun to interpret unless you have some way to
process it beyond reading the CSV file.

 15

Configuring Perfmon

In Snort.conf:

preprocessor perfmonitor: time 300
file /var/log/snort/bogus.stats
pktcnt 10000

 16

Perfmon Data Fields

The fields are “documented” in section
2.2.5 of the manual... poorly.

Drop rate, Mbits/sec, Packets/sec,
Alerts/sec, Packets received, Packets
dropped, many more

Be aware that the drop-rate is averaged over the
lifetime of the snort-process, not over the data-
collection period. A 5% drop rate may be 5% over 24
hours, or 60% for 2 hours.

Other fields are generally averaged over the data-
collection period, but one needs to be careful.

 17

Perfprofiling Preprocessors

“Num” column shows component nesting within the
snort process. For example, “mpse” and “rule eval”
are components of the “detect” module.

“Percent of total” column gives a rough idea of how
much cpu time that component takes up. It's not
precise (note the top-level components do not add
up to 100) but relative comparisons are useful.

In this sample, the pattern-matcher and the stream-
preprocessor take up the vast-majority of time. This
is relatively healthy for a snort instance with lots
(~7k) rules enabled.

This snort can't be effectively tuned by stripping
individual rules, we'd need to cut down the number to
reduce the pattern matcher (mpse) CPU usage.

 18

Perfprofiling Rules

Shows most “expensive” rules in terms of cpu
consumption, sorted by microsecs.

A high “check” count indicates a short/common
content match causing the rule to evaluate often.

A high “Avg/check” value usually indicates an
expensive regex.

Microsecs is checks * avg/check and represents the
relative cpu-cost of running the rule.

Rules that “match” a lot but don't “alert” are probably
setting flowbits, check to see if you care about that
flowbit and if not disable all the rules that set/check it.

 19

Configuring Perfprofiling

Add --enable-perfprofiling to
configure prior to compiling.

In snort.conf:

config profile_rules: print 1000, sort
total_ticks, filename /var/log/snort/snort-
perftest_rule.log

config profile_preprocs: print all, sort
total_ticks, filename /var/log/snort/snort-
perftest_preproc.log

Documented in the perfprofiling readme package
with Snort's source:

http://cvs.snort.org/viewcvs.cgi/snort/doc/README.P
erfProfiling?rev=HEAD&content-
type=text/vnd.viewcvs-markup

There is allegedly a performance overhead for doing
this, but it's clearly not all that high. Perhaps 10%-
20% at the most, I suspect it's negligible.

Note that this is not trivially collectible or trendable,
but it's a good exercise to go through once a year or
so during a major upgrade.

 20

Visualizing Snort Performance

Don't use a snort specific tool!!!

You need data from many sources to evaluate snort
performance. Use a tool that can accept data from
many sources.

Zabbix has a relatively gentle learning curve and is
relatively featureful. Especially dynamically
generated graphs are great for exploring data.

I've heard very good things about Zenoss, but
haven't used it.

Nagios is well established, but has more legacy
baggage and a higher-learning curve. Plus there are
no graphing capabilities built in. Go for it if you have
expertise, but I wouldn't stand up a new instance
today.

 21

Instrumenting Beyond Snort

Tap/Span: SNMP

Packet Transport: SNMP or NOC

Capture: Varies

Snort Analysis: PerfMonitor

Alerts to Disk: OS Stats

Database: OS or DB stats

Frontend: OS stats or App Stats

Snort is an integrated system that depends on many
components, you want a system that can instrument
all (or many) of those components, not just snort.

 22

Click to add title

</Snort Instrumentation>

 23

Click to add title

<Zabbix>

 24

Zabbix Concepts

Item: Data element to be collected

Graph: Visual trend for numeric data

Screen: A collection of graphs

Trigger: Nominal ranges for items

Items can be collected from an agent that supports a
fairly wide variety of OS items natively. SNMP is also
supported, as well as trivial checks like pings or http-
requests from the server.

Graphs are generated dynamically at view time,
which makes exploration a cinch.

Screens, unlike most other resources can't be
templated, which can be frustrating.

Triggers support many conditions including string
tests.

 25

Zabbix Concepts

Action: Performed on trigger condition(s)

Host/Tempate: Collections of (most of)
the above with inheritance

Reports: Weak. Hardcoded red-
light/green-light grids, plus uptime
reports for triggers.

Notifications are supported via actions, as are IPMI
commands (I haven't tested), and remote agent
commands (I also haven't tested, but know they
require sudo/nopasswd access for the zabbix-agent
user). Actions are another resource that can't be
templated for no reason that I can fathom.

 26

Collecting Perfmon Data

Create a userparameter in
zabbix_agentd.conf:

UserParameter=tss.snort.perfmon[*],tail
-n1 '/var/log/snort/$1/snort.stats' |
awk -F ',' '{print $ $2}'

This userparameter accepts an interface-name ($1)
and an awk column-number ($2). It pulled the most
recent line from snort.stats for the appropriate
interface, and prints out the column requested (note
the extra $, as awk uses them to denote variables
just like zabbix does.

 27

Create an Item

This is my dropped packets item.

Note “Store Value” → Delta setting. The snort
dropped packet stats are poor in my opinion due to
averaging over the lifetime of the process, and this
stat is given as a simple counter. Zabbix converts the
counter into a number of dropped packets per
collection-period and gracefully handles overflow-
rollovers.

 28

Create a Graph

Line graphs or pie graphs.

Line graphs can be stacked, as above, to show
cumulative values over time. This snort sensor is
angry, red is dropped packets, green is processed
packets.

 29

Create a Screen

Three sensors, in columns.

In rows from top to bottom are: cpu-utilization
(normalized against the number of cpu's present),
bandwidth reported by snort (stacked where there
are multiple snort instances), bandwidth reported by
the gigamon (or kernel on the right), packet
processed vs dropped packets where available.

This kind of at-a-glance analysis really changed the
way we operate.

 30

Find Problems – DB Disk Outage

This was a real snort outage, and this is the real
graph that I found the problem with.

This was a disk-space outage on our DB server (the
scale goes to 120%, but my disks do not), but I
actually had to investigate my whole failure chain to
find it. Doing so in zabbix took only a few minutes.

Proper use of triggers and actions/alerts could have
prevented this from happening at all.

 31

Intermittent Packet Loss

This sensor can achieve acceptable loss stats by
filtering one port on one host that does large nightly
transfers.

 32

Traffic Growth

This sensor was spec'ed for 50-100mbits of traffic.
The two previous dropped-packets graphs are for
this host at different times during it's traffic growth to
now 500mbit/sec.

Take note of the gaps for comparison on the next
slide.

 33

Span Outage

The second gap also has a gap in the system load
graph, this was a planned outage.

The first gap has low system load stats. Our span
was misconfigured by the NOC and we stopped
getting packets. Zabbix told us before our incident
monitoring folks realized that alerts had stopped.

 34

Mean Nice

This was a bear to troubleshoot. Processes were
getting reniced and we couldn't figure out how.

Turns out it was updated processes inheriting the
nice-value of yum-updatesd when being restarted
after upgrades. We finally made this determination
by correlating log timestamps with initial nice-cpu
spikes. We couldn't have done it based on logs
alone, we needed the CPU trend data.

This is an outstanding redhat bug by the way, watch
out for it.

 35

Click to add title

</Zabbix>

 36

Click to add title

<Demo />

 37

Conclusion

Instrument your systems

Visualize your data

Troubleshoot faster

Understand what's normal for you

 38

Click to add title

<Questions />

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

